Menu
The world of science and progress
Pulsar Transformed Into Small Planet Made of Diamond Discovered in Milky Way

New Depiction of Light Could Boost Telecommunications Channels

Free Radicals Crucial to Suppressing Appetite

Preserving 4 Percent of the Ocean Could Protect Most Marine Mammal Species, Study Finds

Panda Poop May Be a Treasure Trove of Microbes for Making Biofuels

Discovery Sheds Light On the Ecosystem of Young Galaxies

New Method Reveals Parts of Bacterial Genome Essential to Life

Novel Alloy Could Produce Hydrogen Fuel from Sunlight

Tiny Oxygen Generators Boost Effectiveness of Anticancer Treatment

Bedrock Nitrogen May Help Forests Buffer Climate Change, Study Finds

'Gene Overdose' Causes Extreme Thinness

Manufacturing Method Paves Way for Commercially Viable Quantum Dot-Based LEDs

Cutting Soot Emissions: Fastest, Most Economical Way to Slow Global Warming?

Tasmanian Tiger's Jaw Was Too Small to Attack Sheep, Study Shows

Manipulating Plants' Circadian Clock May Make All-Season Crops Possible

NASA's Chandra Finds Nearest Pair of Supermassive Black Holes

Up from the Depths: How Bacteria Capture Carbon in the 'Twilight Zone'

Understanding Next-Generation Electronic Devices: Smallest Atomic Displacements Ever

Woolly Rhino Fossil Discovery in Tibet Provides Important Clues to Evolution of Ice Age Giants

Sparing or Sharing? Protecting Wild Species May Require Growing More Food On Less Land

Glowing, Blinking Bacteria Reveal How Cells Synchronize Biological Clocks

Rock Rafts Could Be 'Cradle of Life'

Robots Learn to Handle Objects, Understand New Places

World's Smallest Electric Motor Made from a Single Molecule

First Stem Cells from Endangered Species

New Material Shows Promise for Trapping Pollutants
Water softening techniques are very effective for removing minerals such as calcium and magnesium, which occur as positively-charged ions in "hard" water. But many heavy metals and other inorganic pollutants form negatively-charged ions in water, and existing water treatment processes to remove them are inefficient and expensive.

Chemists at the University of California, Santa Cruz, have now developed a new type of material that can soak up negatively-charged pollutants from water. The new material, which they call SLUG-26, could be used to treat polluted water through an ion exchange process similar to water softening. In a water softener, sodium ions weakly attached to a negatively-charged resin are exchanged for the hard-water minerals, which are held more tightly by the resin. SLUG-26 provides a positively-charged substrate that can exchange a nontoxic negative ion for the negatively-charged pollutants.

"Our goal for the past 12 years has been to make materials that can trap pollutants, and we finally got what we wanted. The data show that the exchange process works," said Scott Oliver, associate professor of chemistry at UC Santa Cruz.

The chemical name for SLUG-26 is copper hydroxide ethanedisulfonate. It has a layered structure of positively-charged two-dimensional sheets with a high capacity for holding onto negative ions. Oliver and UCSC graduate student Honghan Fei described the compound in a paper that will be published in the journal Angewandte Chemie and is currently available online.

The researchers are currently focusing on the use of SLUG-26 to trap the radioactive metal technetium, which is a major concern for long-term disposal of radioactive waste. Technetium is produced in nuclear reactors and has a long half-life of 212,000 years. It forms the negative ion pertechnetate in water and can leach out of solid waste, making groundwater contamination a serious concern.

"It's a problem because of its environmental mobility, so they need new ways to trap it," Oliver said.

In their initial studies, the researchers used manganese, which forms the negative ion permanganate, as a non-radioactive analog for technetium and pertechnetate. The next step will be to work with technetium and see if SLUG-26 performs as effectively as it did in the initial studies.

"Whether or not it can be used in the real world is still to be seen, but so far it looks very promising," Oliver said.

This research was supported by the National Science Foundation.

Для печати
Check writing-reviews for the most reliable writing companies reviews by students


Menu
Growing Meat in the Lab: Scientists Initiate Action Plan to Advance Cultured Meat

Recycling Fat Might Help Worms Live Longer

In More Socially Engaging Environment, White Fat Turns to Brown, Mouse Study Suggests

Clouds Don't Cause Climate Change, Study Shows

Novel Magnetic, Superconducting Material Opens New Possibilities in Electronics

New Material Shows Promise for Trapping Pollutants

Breakthrough Could Double Wireless Capacity With No New Towers

Microbes Generate Electricity While Cleaning Up Nuclear Waste

Milky Way Galaxy Might Hold Thousands of Ticking 'Time Bombs'

Neurosurgeons Use Adult Stem Cells to Grow Neck Vertebrae

Jumping Gene's Preferred Targets May Influence Genome Evolution

Peer Pressure? It's Hardwired Into Our Brains, Study Finds

Scientists Create Mammalian Cells With Single Chromosome Set

Evidence for a Persistently Iron-Rich Ocean Changes Views On Earth's Early History

Nanosensors Made from DNA May Light Path to New Cancer Tests and Drugs

Endangered Horse Has Ancient Origins and High Genetic Diversity, New Study Finds

Australopithecus Sediba Paved the Way for Homo Species, New Studies Suggest

Babies Distinguish Pain from Touch at 35-37 Weeks, Research Finds

Mantis Shrimp: Ocean Floor Critters Communicate in Synchronized Rumbles

Powered by Seaweed: Polymer from Algae May Improve Battery Performance

Captivated by Critters: Humans Are Wired to Respond to Animals

Birth Control Pills Affect Memory, Researchers Find

NASA Launches Mission to Study Moon From Crust to Core

Sea Levels Much Less Stable Than Earlier Believed, New Coral Dating Method Suggests

Ferroelectrics Could Pave Way for Ultra-Low Power Computing