Menu
The world of science and progress
Pulsar Transformed Into Small Planet Made of Diamond Discovered in Milky Way

New Depiction of Light Could Boost Telecommunications Channels

Free Radicals Crucial to Suppressing Appetite

Preserving 4 Percent of the Ocean Could Protect Most Marine Mammal Species, Study Finds

Panda Poop May Be a Treasure Trove of Microbes for Making Biofuels

Discovery Sheds Light On the Ecosystem of Young Galaxies

New Method Reveals Parts of Bacterial Genome Essential to Life

Novel Alloy Could Produce Hydrogen Fuel from Sunlight

Tiny Oxygen Generators Boost Effectiveness of Anticancer Treatment

Bedrock Nitrogen May Help Forests Buffer Climate Change, Study Finds

'Gene Overdose' Causes Extreme Thinness

Manufacturing Method Paves Way for Commercially Viable Quantum Dot-Based LEDs

Cutting Soot Emissions: Fastest, Most Economical Way to Slow Global Warming?

Tasmanian Tiger's Jaw Was Too Small to Attack Sheep, Study Shows

Manipulating Plants' Circadian Clock May Make All-Season Crops Possible

NASA's Chandra Finds Nearest Pair of Supermassive Black Holes

Up from the Depths: How Bacteria Capture Carbon in the 'Twilight Zone'

Understanding Next-Generation Electronic Devices: Smallest Atomic Displacements Ever

Woolly Rhino Fossil Discovery in Tibet Provides Important Clues to Evolution of Ice Age Giants

Sparing or Sharing? Protecting Wild Species May Require Growing More Food On Less Land

Glowing, Blinking Bacteria Reveal How Cells Synchronize Biological Clocks

Rock Rafts Could Be 'Cradle of Life'

Robots Learn to Handle Objects, Understand New Places

World's Smallest Electric Motor Made from a Single Molecule

First Stem Cells from Endangered Species

Microbes Generate Electricity While Cleaning Up Nuclear Waste
Researchers at Michigan State University have unraveled the mystery of how microbes generate electricity while cleaning up nuclear waste and other toxic metals.

Details of the process, which can be improved and patented, are published in the current issue of the Proceedings of the National Academy of Sciences. The implications could eventually benefit sites forever changed by nuclear contamination, said Gemma Reguera, MSU microbiologist.

"Geobacter bacteria are tiny micro-organisms that can play a major role in cleaning up polluted sites around the world," said Reguera, who is an MSU AgBioResearch scientist. "Uranium contamination can be produced at any step in the production of nuclear fuel, and this process safely prevents its mobility and the hazard for exposure."

The ability of Geobacter to immobilize uranium has been well documented. However, identifying the Geobacters' conductive pili or nanowires as doing the yeoman's share of the work is a new revelation. Nanowires, hair-like appendages found on the outside of Geobacters, are the managers of electrical activity during a cleanup.

"Our findings clearly identify nanowires as being the primary catalyst for uranium reduction," Reguera said. "They are essentially performing nature's version of electroplating with uranium, effectively immobilizing the radioactive material and preventing it from leaching into groundwater."

The nanowires also shield Geobacter and allow the bacteria to thrive in a toxic environment, she added.

Their effectiveness was proven during a cleanup in a uranium mill tailings site in Rifle, Colo. Researchers injected acetate into contaminated groundwater. Since this is Geobacters' preferred food, it stimulated the growth of the Geobacter community already in the soil, which in turn, worked to remove the uranium, Reguera said.

Reguera and her team of researchers were able to genetically engineer a Geobacter strain with enhanced nanowire production. The modified version improved the efficiency of the bacteria's ability to immobilize uranium proportionally to the number of nanowires while subsequently improving its viability as a catalytic cell.

Reguera has filed patents to build on her research, which could lead to the development of microbial fuel cells capable of generating electricity while cleaning up after environmental disasters.

The research team included Dena Cologgi and Allison Speers, MSU graduate students, and Sanela Lampa-Pastirk and Shelly Kelly, post-doctoral researchers. The National Institute of Environmental Health Science and the U.S. Department of Energy funded the study.

Для печати

convert jpg to tiff mac
usb over ip redirector
here
naturalwayorganics
happywheels-game

Menu
Growing Meat in the Lab: Scientists Initiate Action Plan to Advance Cultured Meat

Recycling Fat Might Help Worms Live Longer

In More Socially Engaging Environment, White Fat Turns to Brown, Mouse Study Suggests

Clouds Don't Cause Climate Change, Study Shows

Novel Magnetic, Superconducting Material Opens New Possibilities in Electronics

New Material Shows Promise for Trapping Pollutants

Breakthrough Could Double Wireless Capacity With No New Towers

Microbes Generate Electricity While Cleaning Up Nuclear Waste

Milky Way Galaxy Might Hold Thousands of Ticking 'Time Bombs'

Neurosurgeons Use Adult Stem Cells to Grow Neck Vertebrae

Jumping Gene's Preferred Targets May Influence Genome Evolution

Peer Pressure? It's Hardwired Into Our Brains, Study Finds

Scientists Create Mammalian Cells With Single Chromosome Set

Evidence for a Persistently Iron-Rich Ocean Changes Views On Earth's Early History

Nanosensors Made from DNA May Light Path to New Cancer Tests and Drugs

Endangered Horse Has Ancient Origins and High Genetic Diversity, New Study Finds

Australopithecus Sediba Paved the Way for Homo Species, New Studies Suggest

Babies Distinguish Pain from Touch at 35-37 Weeks, Research Finds

Mantis Shrimp: Ocean Floor Critters Communicate in Synchronized Rumbles

Powered by Seaweed: Polymer from Algae May Improve Battery Performance

Captivated by Critters: Humans Are Wired to Respond to Animals

Birth Control Pills Affect Memory, Researchers Find

NASA Launches Mission to Study Moon From Crust to Core

Sea Levels Much Less Stable Than Earlier Believed, New Coral Dating Method Suggests

Ferroelectrics Could Pave Way for Ultra-Low Power Computing